

R. A. Houze, Jr.,
Angela Rowe,
Lynn McMurdie,
Stacy Brodzik,
Megan Chaplin
Joe Zagrodnik,
Thomas Schuldt

See poster 244

NASA PMM Science Team Meeting, San Diego, 18 October 2017

Identification of Mesoscale Convective Precipitation in GPM Data

Robert Houze and Stacy Brodzik PMM Science Team Meeting San Diego, CA October 16-20, 2017

Reviews of Geophysics

REVIEW ARTICLE

The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite

Robert A. Houze Jr.¹, Kristen L. Rasmussen², Manuel D. Zuluaga³, and Stella R. Brodzik¹

August 2015

The TRMM study identified categories of convective and stratiform echoes based on their <u>3D</u> structure

Object	Echo Characteristic	Height	Area
Isolated Shallow Echoes	> min detectable	< 4 km	2 pixels
Deep Convective	> 40 dBZ (<u>strong</u>)	> 10 km	N/A
Cores	> 30 dBZ (moderate)	> 8 km	N/A
Wide Convective	> 40 dBZ (<u>strong</u>)		> 1000 km² at some altitude
Cores	> 30 dBZ (moderate)		> 800 km ² at some altitude
			> 50,000 km ² (<u>strong</u>)
Broad Stratiform Regions	Contiguous stratiform		> 30,000 km ² (<u>moderate</u>)
			30-50,000 km ² (<u>filtered</u>)

An Example of the TRMM Results

Deep Convective Cores (strong)

Frequencies of occurrence

See Houze et al. 2015 for full low-latitude patterns of these features

Wide Convective Cores (strong)

Broad Stratiform (strong)

GPM Goal:

Extend this work to higher latitudes

Problem:

 V4 classified a lot of Ku stratiform echo as convective

V5 corrected much of this problem

Example of successful correction

But problems remain

Problem case: East Coast Front

October NE U.S.

(20141022/1132)

Problem case: West Coast Front

December NW coast of U.S.

(20141224/1202)

Problem case: North Pacific

February North Pacific

(20150202/0839)

Solving this remaining problem is critical to all applications that depend on convective/stratiform classification

(latent heating, PSD, ...)

Complicating factors in identifying stratiform echo in GPM data:

- Melting level height varies
- Bright band is often >40 dBZ
- Melting level is not always a sharp peak in dBZ
- Key indicator of SF is a strong drop off in reflectivity above melting level

UW add-on to V5 C/S algorithm

Test Area

Problem case: East Coast Front

Problem case: West Coast Front

Problem case: North Pacific

	Object	Echo Characteristic	Height	Area
	Isolated Shallow Echoes	> min detectable	< 4 km	2 pixels
	Deep Convective Cores	> 40 dBZ (<u>strong</u>)	> 10 km	N/A
		> 30 dBZ (moderate)	> 8 km	N/A
	Wide Convective Cores	> 40 dBZ (<u>strong</u>)		> 1000 km² at some altitude
		> 30 dBZ (<u>moderate</u>)		> 800 km ² at some altitude
	Broad Stratiform Regions	Contiguous stratiform		> 50,000 km ² (<u>strong</u>)
				> 30,000 km ² (<u>moderate</u>)
				30-50,000 km ² (<u>filtered</u>)

Comparison of v05 Counts NASA/UW (strong thresholds)

Comparison of v05 Counts NASA/UW (moderate thresholds)

Percentage of WCCs reclassified by UW add-on (strong threshold cases)

PROBABILITY MAPS (BASED ON GPM-Ku v05, 2014-2017)

(a) DJF broad stratiform regions strong thresholds

(b) DJF deep convective cores strong thresholds

(c) DJF deep/wide convective cores strong thresholds

(d) DJF wide convective cores strong thresholds

PROBABILITY MAPS (BASED ON GPM-Ku v05uw2, 2014-2017)

(a) DJF broad stratiform regions strong thresholds (uw2)

(b) DJF deep convective cores strong thresholds (uw2)

(c) DJF deep/wide convective cores strong thresholds (uw2)

(d) DJF wide convective cores strong thresholds (uw2)

PROBABILITY MAPS (BASED ON GPM-Ku v05, 2014-2017)

(a) MAM broad stratiform regions strong thresholds

(b) MAM deep convective cores strong thresholds

(c) MAM deep/wide convective cores strong thresholds

(d) MAM wide convective cores strong thresholds

PROBABILITY MAPS (BASED ON GPM-Ku v05uw2, 2014-2017)

(a) MAM broad stratiform regions strong thresholds (uw2)

(b) MAM deep convective cores strong thresholds (uw2)

(c) MAM deep/wide convective cores strong thresholds (uw2)

(d) MAM wide convective cores strong thresholds (uw2)

Conclusions

- V5 performs better than V4 but still indicates a lot of stratiform as convective -> overestimation of convective latent heating
- An algorithm based on the dropoff of reflectivity above the maximum dBZ eliminates most of the problem
- Over the North America sector, the problem is greatest in winter and spring, at higher latitudes, & over the ocean

Extra Slides

PROBABILITY MAPS (BASED ON GPM-Ku v05, 2014-2017)

(a) JJA broad stratiform regions strong thresholds

(b) JJA deep convective cores strong thresholds

(c) JJA deep/wide convective cores strong thresholds

(d) JJA wide convective cores strong thresholds

PROBABILITY MAPS (BASED ON GPM-Ku v05uw2, 2014-2017)

(a) JJA broad stratiform regions strong thresholds (uw2)

(b) JJA deep convective cores strong thresholds (uw2)

(c) JJA deep/wide convective cores strong thresholds (uw2)

(d) JJA wide convective cores strong thresholds (uw2)

PROBABILITY MAPS (BASED ON GPM-Ku v05, 2014-2016)

(a) SON broad stratiform regions strong thresholds

(b) SON deep convective cores strong thresholds

(c) SON deep/wide convective cores strong thresholds

(d) SON wide convective cores strong thresholds

PROBABILITY MAPS (BASED ON GPM-Ku v05uw2, 2014-2016)

(a) SON broad stratiform regions strong thresholds (uw2)

(b) SON deep convective cores strong thresholds (uw2)

(c) SON deep/wide convective cores strong thresholds (uw2)

(d) SON wide convective cores strong thresholds (uw2)

